国产一区二区三区亚洲av,成人av综合亚洲一区二区,波多野结衣乱码中文字幕,国产★浪潮AV无码性色

Deaerator typedrain flash tank源頭廠家規(guī)格參數(shù)
Your location : Home > Product > Deaerator type
drain flash tank
drain flash tank
drain flash tank
drain flash tank

drain flash tank

A drainage expansion vessel is a type of vessel that expands and depressurizes the drainage of the pressure drainage pipeline, separates steam and drainage, and introduces steam into a heat exchanger or deaerator. The drainage expansion vessel consists of two 16m rectangular containers, with the other mainly accepting high-pressure heater emergency drainage and deaerator overflow drainage.
Online inquiry
下一產(chǎn)品 : 沒有了
  • Content details

Introduction to hydrophobic expansion vessels:


A drainage expansion vessel is a device that expands and depressurizes the drainage of the pressure drainage pipeline, separates steam and drainage, and introduces steam into a heat exchanger or deaerator to fully utilize its heat energy. The drainage is then introduced into a drainage tank, which is regularly fed into the water supply system. The main purpose is to reduce pressure. If high-pressure steam directly enters the condenser, it can easily cause pressure in the condenser. Through it, pressure can be reduced and avoided. At the same time, some of them also have a temperature reduction device that can lower the temperature. And mechanical (free float, lever float, inverted bucket) steam traps are opened and closed using the principle of buoyancy. It can automatically distinguish between steam and water, and is used to collect and reuse water that requires continuous drainage, high flow rate, and discharge. The structure of the lever float trap and the inverted bucket trap is complex, while the structure of the free float trap is simple and non vapor, and is generally used for pipe or equipment drainage;


Hydrophobic expansion container, expansion container function:


This drainage expansion vessel is composed of two 16m rectangular containers, which mainly accept the drainage of the turbine body and pipelines, as well as the drainage of high-pressure heater accidents and deaerator overflow. After the drainage enters the expansion vessel, it passes through the energy dissipation device and undergoes flash evaporation expansion and water spray cooling in the huge space of the expansion vessel, reducing its energy to the allowable value of the condenser. The steam and water after energy dissipation are respectively discharged into the throat of the condenser and the hot well, ensuring smooth drainage of the unit and pipeline, and preventing damage to the internal components of the condenser, as well as recovering the working fluid of the steam turbine. The hydrophobic expansion vessel is used for the expansion of hydrophobic pipelines under high pressure and temperature. The steam separated by the hydrophobic expansion vessel is introduced into the heat exchanger or deaerator, while the separated hydrophobic water is introduced into the drainage tank and then sent to the boiler's feedwater system.


Hydrophobic expansion vessel, expansion vessel outlet potential:


As one of the industrial equipment, hydrophobic expansion vessels play an indispensable role in industry. With the continuous development of the economy, the presence of hydrophobic expansion vessels can be seen everywhere in daily production. Therefore, in order to meet the needs of users or to understand production knowledge, and to fully utilize the role of this equipment


Hydrophobic expansion vessel, purpose of expansion vessel:


A drainage expansion vessel is a device that expands and depressurizes the drainage of a pressure drainage pipeline, separates steam and drainage, and introduces steam into a heat exchanger or deaerator to fully utilize its heat energy. The drainage is then introduced into a drainage tank, which is regularly fed into the water supply system. The main purpose is to reduce pressure. If high-pressure steam directly enters the condenser, it can easily cause pressure in the condenser. Through it, pressure can be reduced and avoided. At the same time, there is a temperature reduction device inside, which can lower the temperature. This drainage expansion vessel consists of two 16m rectangular containers, which mainly accept drainage from the turbine body and pipelines, as well as emergency drainage from high pressure heaters and overflow drainage from deaerator. After the drainage enters the expansion vessel, it passes through the energy dissipation device and undergoes flash evaporation expansion and water spray cooling in the huge space of the expansion vessel, reducing its energy to the allowable value of the condenser. The steam and water after energy dissipation are respectively discharged into the throat of the condenser and the hot well, ensuring smooth drainage of the unit and pipeline, and preventing damage to the internal components of the condenser, as well as recovering the working fluid of the steam turbine. The hydrophobic expansion vessel is used for the expansion of hydrophobic pipelines under high pressure and temperature. The steam separated by the hydrophobic expansion vessel is introduced into the heat exchanger or deaerator, while the separated hydrophobic water is introduced into the drainage tank and then sent to the boiler's feedwater system.


Installation and operation precautions for hydrophobic expansion vessels:


1. The rectangular drain flash tank, also known as the shoulder blue drain flash tank, is installed on the high-pressure condenser side and the low-pressure condenser side. The specific installation elevation and location are detailed in the condenser opening and attachment diagram of the project.


2. The drainage expansion vessel located on the high-pressure side is equipped with 12 drainage connections, which are used to receive the drainage of the steam turbine drainage system diagram - drainage header pipes a, b, c, d, e, j, g, emergency drainage of low-pressure heaters 5 #, 7 #, and 8 #, positive drainage of low-pressure heaters 8 #, exhaust ventilation valve interface, etc. The interfaces of each drainage pipe shall not be interchanged. The specific connection positions and interfaces between each drainage pipe and the drainage pipe can be found in the drainage flash tank I (drawing number M740-032000A) and the drainage system of the project - located on the low-pressure side of the drainage flash tank. There are 12 drainage pipes, which are used to receive the drainage of the drainage collection pipes h and i in the drainage system diagram. Emergency drainage of low-pressure heaters 6 #, 7 #, and 8 #, auxiliary steam drainage, deaerator overflow drainage, small steam turbine body drainage, and boiler 5% startup drainage, 1 #, 2 #, 3 # high-pressure heaters emergency drainage, etc. Each drainage connection interface shall not be interchanged. The specific interface position can be found in the drainage expansion vessel II (drawing number M740-033000A) and the drainage system diagram of the project.


3. When connecting each drainage branch pipe to the drainage main pipe, it should be arranged according to the drainage pressure of each drainage pipe. For those with higher drainage pressure connected to the same main pipe, they should be connected relatively far away from the drainage expansion vessel. For those with lower pressure, they should be connected close to the drainage expansion vessel, and each branch pipe should be connected at a 45 ° angle with the main pipe, facing the expansion vessel to ensure smooth drainage of each drainage pipe.


4. Install the expansion vessel in place, connect the pipeline and conduct a sealing test with the condenser. Expanding the container during the experiment - temporary support must be added.


When the drainage expansion vessel is put into operation, water should be sprayed simultaneously. The amount and amount of water sprayed can be controlled and adjusted through valves installed on the water spraying pipeline to ensure that the temperature inside the expansion vessel is less than 80 ℃ and the pressure is less than 0.14 MPa (a). The design water spray pressure of each expander is 1.0MPa, and the water spray rate is about 7.2Kg/s.


6. A filter screen should be installed on the water spraying pipeline, and the filter screen should not be less than 32 mesh. The filter should be cleaned regularly to prevent clogging of the spray hole.


7. The fixed screw used for transportation on the waveform expansion joint must be removed after the installation and water filling test of the expansion joint.


8. The drainage flash tank - under high load conditions - is usually during the start-up process of the unit. Therefore, during the operation of the unit, when the unit starts, stops, or the emergency drain valve of the heater is fully opened, attention should be paid to monitoring the operation status of the flash tank. When the temperature and pressure are too high or not positive, it is necessary to check the condition of each drain valve, pipeline, and filter screen of the steam turbine in a timely manner and handle it in a timely manner. Master the operating rules of the drain expander, set the opening size of the spray valve, and achieve maintenance.


Hydrophobic expansion vessel, expansion vessel structure and working principle:


The hydrophobic expansion vessel adopts a fully welded structure, which is composed of components such as the shell, hydrophobic connecting pipe, spray pipe, buffer plate, waveform expansion joint, etc. The nozzle on the spray pipe adopts a nozzle to evenly spray the condensed water and achieve atomization. For the convenience of installation and layout of the power plant, the external design of the drainage expansion tank is a rectangular structure, arranged on the high-pressure condenser side and the low-pressure condenser side. Due to the limitations of the layout position, drainage capacity, and other auxiliary equipment of the power plant, as well as the drainage requirements, the size of the interface pipes of the two drainage flash tanks is not exactly the same. The drainage from various parts of the unit is discharged into the corresponding drainage main pipe through the drainage pipeline, and enters the drainage flash tank through the drainage connecting pipe on the drainage flash tank. There are a certain number of spray holes on each drainage pipe, which have a stepwise pressure reduction and energy dissipation effect on the water entering the expansion tank. Cooling water (condensate) is sprayed into the upper part of the expansion vessel through a nozzle on the spray pipe, causing the flash steam temperature inside the expansion vessel to rapidly decrease and condense, increasing the expansion capacity of the hydrophobic expansion vessel. Support rods and rib plates are also installed inside the shell to enhance the rigidity of the expander. Install buffer plates at the steam and water discharge outlets of the drainage flash tank to prevent the steam and condensate inside the flash tank from directly impacting the components inside the condenser and affecting the normal operation of the condenser. There is a maintenance manhole door on the hydrophobic expansion tank for maintenance, cleaning, and other purposes. Mechanical (free floating ball, lever floating ball, inverted bucket) steam traps are opened and closed using the principle of buoyancy. It can automatically distinguish between steam and water, and is used to collect and reuse water that requires continuous drainage, high flow rate, and discharge. The structure of the lever float trap and the inverted bucket trap is complex, while the structure of the free float trap is simple and non vapor, and is generally used for pipe or equipment drainage; Thermodynamic (disc type, pulse type) steam traps use the principles of aerodynamics to open and close valves by generating pressure drop from the turning of the vapor.


Used in areas with low flow rate, high differential pressure, and low requirements for continuity, with a simple structure and the presence of pulse leakage. Generally used for pipe drainage and secondary drainage expansion. Specific structure


Composition, types, and representation methods of horizontal hydrophobic expansion vessels:


Steam turbine drainage expansion vessels can be divided into two types: vertical drainage expansion vessels and horizontal drainage expansion vessels


Composition of vertical hydrophobic expansion vessel -


1. Shell


2. Water inlet distributor


3. Effluent defoamer


4. Safety release device


5. Liquid level indicator


6. Composition of liquid regulating device. (The safety relief device and liquid level adjustment device are not within the scope of supply. If they are required to be matched at the same time, they must be specified in the contract.)


Hydrophobic expansion vessel, expansion vessel note: Various specifications of continuous discharge can be designed according to user needs, and technical parameters can be provided by the user.


Composition of horizontal hydrophobic expansion vessel -


The composition of horizontal hydrophobic expansion vessels is similar to that of vertical hydrophobic expansion vessels.


A drainage flash tank is a device that expands and depressurizes the drainage flash tank of a pressure drainage pipeline, separates steam and drainage, and introduces steam into a heat exchanger or deaerator to fully utilize its heat energy. The drainage is then introduced into a drainage tank, which is regularly fed into the water supply system.


Hydrophobic expansion vessel, analysis of expansion vessel accidents:


On July 18, 2004, after the second impulse of Unit 2 entered the stage of complete trial operation, there were problems with loud noise and vibration when starting the drainage flash tank, especially after the unit was unloaded.


On the morning of July 19th, due to the power loss of the turbine monitoring system (TSI), the emergency trip protection system (ETS) of the unit turbine tripped, causing the unit load to drop from 270MW to 0. After shutdown, there was an abnormal situation where the pressure gauge pipe of the start-up drainage flash tank was washed off and flew out. Subsequently, on the afternoon of July 19th, July 31st, August 6th, and August 9th, four consecutive high load trips occurred, causing severe abnormal conditions in the start-up of the drainage flash tank. Metal fragments flew out of the exhaust pipe of the start-up drainage flash tank.


On site inspection found that the lower ring used to fix the expansion tube in the drainage expansion vessel and internal components of the expansion vessel had fallen off, the upper ring had deformed, and the lower drainage outlet was sealed by broken iron blocks. The internal structure had been severely damaged. From this, it can be concluded that the damage to the metal components inside the hydrophobic expansion vessel is caused by the direct entry of high-temperature and high-pressure steam into the hydrophobic expansion vessel, causing the pressure and temperature borne by the internal components of the hydrophobic expansion vessel to exceed the design pressure and temperature.


Hydrophobic expansion vessel, analysis of the causes of expansion vessel failure:


1. Analysis of drain flash tank, flash tank pipeline valve system:


Due to the use of fully open and fully closed pneumatic valves for the relevant drain valves of the unit, which cannot maintain an intermediate opening degree, during the hot and hot start-up process of the unit, although the steam temperature and pipe wall metal temperature are relatively high, only a small amount of drainage is required for the pipeline, the pneumatic drain valve can only be fully open, which may cause excessive high temperature and high pressure steam to enter the expansion vessel, which is not conducive to the safe operation of the expansion vessel. Therefore, it is necessary to improve the pipeline valve system to enable the unit to properly control the drainage amount under different operating conditions such as hot and hot start.


2. Analysis of hydrophobic expansion vessel, expansion vessel cooling water spray system:


Start the cooling spray water of the drainage expander - from industrial water. The water pressure of industrial water main pipe is about 0.4MPa. Trial operation - found that the pressure of the cooling water spray for starting the drainage expander was too low and the water volume was too small. In order to ensure that the high-temperature and high-pressure steam entering the start-up drainage expander during the start-up of the unit can be fully cooled and desorbed, so that the expander is not warm or pressurized, measures should be taken to increase the desorbing water pressure and increase the amount of desorbing water, such as increasing the pipe diameter and using desorbing spray water with higher stable water pressure. At the same time, it is necessary to enhance the cooling effect of the cooling water spray inside the expansion vessel, so that the cooling water spray can reach the spraying state inside the expansion vessel. However, the original design of the equipment manufacturer did not adopt a door atomization measure.


3. Analysis of DCS control logic for pneumatic drain valves in drainage expansion vessels:


4. Start the drain flash tank and control the pneumatic drain valve of the flash tank


(1) When the unit load is less than 20% of the rated load, open drain valves 1, 2, 3, and 4 (see Figure 1); When the load exceeds 22% of the rated load, connect the drain valve.


(2) When the reheat hot pipeline starts the drain tank, the reheat cold pipeline starts the drain tank, and the extraction steam pipeline drain tank, if the water level in any drain tank is high or high, the corresponding drain valve will be opened- Close the valve 15 seconds after the liquid level is high.


5. Problems with the control logic of the hydrophobic expansion vessel:


(1) The action of starting the drain valve in the main steam pipeline of the drainage expansion vessel is not reasonable, as the control condition is only based on the unit load. Because during the process of unit load rejection and shutdown, the process of reducing the unit from high load to 0 is very short. At this time, the steam parameters are still very high, even close to the design pressure of 17.75 MPa and the design temperature of 540 ℃. In terms of drainage, the main steam pipeline does not need to be drained at this time. However, according to the control logic, the load is less than 20% of the rated load at this time, so the drain valve is in a fully open state, and a large amount of high-temperature and high-pressure steam directly enters the startup drain flash tank, causing the flash tank to be overloaded, temperature and pressure tight, until internal components are damaged. In addition, during the hot start process where the unit starts up again shortly after being shut down due to load rejection, the temperature of the main steam pipeline and main steam is still very high. At this time, the control basis for starting the drain valve should not be solely based on the load. Therefore, in addition to the unit load, steam temperature, pipe wall temperature, or temperature change rate should also be introduced as the control basis for the operation of the drain valve.


(2) The analysis of the unit trip process shows that "the unit load is less than 20% of the rated load" is not a necessary drainage condition during the unit trip process. Therefore, "the unit load is less than 20% of the rated load" should only be a condition for opening the drain valve in the non tripping state of the unit.


(3) The control logic of the drainage flash tank requires that the unit load be less than 20% of the rated load, and the drain valve that enters the startup drainage flash tank should be opened in conjunction, without considering the bearing capacity of the startup drainage flash tank under this working condition- On the basis of ensuring the reliable and safe drainage of the steam turbine body, the load value of the initial drainage should be appropriately reduced after calculation and analysis, in order to maintain the drainage effect at low load while also considering the bearing capacity of the start-up drainage expander.


Hydrophobic expansion vessel - chemical economy - chemical scheme:


1. Improvement of hydrophobic expansion vessel, expansion vessel pipeline and valve system:


28 pneumatic drain valves have been installed for 1, 2, 3, and 4, respectively × The bypass pipeline of 3.5 and the manual and secondary valves of the bypass are shown in Figure l. In this way, the amount of drainage entering the start-up drainage flash tank can be controlled according to the operating conditions of the unit. If necessary, the bypass valve and secondary valve of the drainage valve can be opened appropriately for drainage, which can not only maintain the drainage effect but also prevent damage to the temperature and pressure of the start-up drainage flash tank.


2. Improvement of hydrophobic expansion vessel and cooling water spray device for expansion vessel:


Increase the diameter of the cooling water spray pipe for starting the drainage expander, from the original? forty-five × Change 2.5 to? fifty-seven × 3. To increase the cooling water volume. Change the temperature reducing spray water from industrial water to pressure high, water stable condensate water, and the operating condensate water main pipe pressure can reach 3.0 MPa. In order to enhance the cooling effect of the cooling water spray in the expansion container, we will also? fifty-seven × The cooling water spray pipeline of 3 extends into the interior of the start-up drainage flash tank. The extended part adopts the No. 20 boiler with sufficient strength



疏水?dāng)U容型號幾何容積 m 3設(shè)計(jì)壓力 MPa-高工作壓力 MPa設(shè)備-量Kg設(shè)計(jì)溫度 ℃
SK0.50.50.20.2340150
SK0.750.750.20.2640150
SK0.75-II0.750.350.35506152
SK1.01.00.20.2715150
SK1.51.50.250.25612350
SK1.5B1.51.21.21100170
SK2.02.00.20.2820150


zanpc zanpchover
wechat 分享到微信
wechat 分享到微信
weibo 分享到微博

產(chǎn)品動態(tài)

打賞
手機(jī)看全文
手機(jī)掃碼看全文
分享
微信好友
復(fù)制鏈接
掃碼分享至微信

drain flash tank源頭廠家Copyright ? 2012-2023 Lianyungang Lingdong Electromechanical Equipment Co., Ltd all rights reserved

Tel

0518-85370171

成人一区二区三区激情视频-久久一区二区免费蜜桃-钢琴考级三级咏叹调视频-亚洲性感毛片在线视频| 欧美日韩在线视频一区不卡-高清自拍最新国产精品-亚洲自偷精品视频自拍-日韩在线不卡中文字幕| 中文字幕一区二区三区日韩精品-久久老熟女一区二区三区福利-久久精品国产自产对白一区-午夜欧美牲交激情网站| 免费观看一区二区av蜜桃-免费一级特黄久久大片-每日更新日韩中文字幕有码-97视频在线观看午夜| 最近中文字幕国产精品-国产一级片黄片免费观看-日本一区二区三区日韩欧美-亚洲一区电影网站在线观看| 日本亚洲一线二线三线-九月丁香婷婷啪啪色综合-狠狠综合欧美综合欧美色-亚洲丁香视频中文在线| 亚洲熟女少妇中文字幕-日韩精品一区二区三区激情视频-一个人看的视频在线播放-亚洲综合一区二区国产精品| 人妻少妇精品久久中文字幕-在线免费观看亚洲小视频-网友偷拍视频一区二区三区-亚洲国产精品日韩av在线| 欧美日韩你懂的在线观看-国产欧美日韩亚洲一区二区-国产无遮挡裸体免费久久-亚洲国内精品久久久久久| 国产老熟女精品一区二区三区-精品国精品自拍自在线-亚洲国内自拍愉拍少妇-欧美日韩一级片免费播放| 中美高清在线观看av-精品视频中文字幕天码-日韩高清一二三区在线观看-精品人妻91一区二区三区| 黄色永久免费中文字幕-蜜臀av一区二区三区人妻在线-国产精品久久午夜伦鲁鲁-国产欧美日韩亚洲更新| 国产偷拍自拍视频在线观看-丰满欧美熟妇视频在线-亚洲午夜激情在线观看-四虎视频精品免费观看| 亚洲av日韩av天堂影片精品-熟妇人妻丰满少妇中文-国产精品日本一区二区三区-国产精品熟女乱色一区二区| 日本老熟妇在线视频网-精品人妻在线一区二区三区视频-91亚洲国产成人精品福利-青青草免费手机直播视频| 久久亚洲国产高清av一级-免费国产精品自偷自偷免费看-日本a级特黄三级三级三级-欧美日韩一区二区中文字幕高清视频| 日产中文字幕在线精品一区-日韩黄色特级片一区二区三区-8x8x精品国产自在现线拍-内射爆操视频在线观看| 亚洲女人性开放视频免费-亚洲婷婷精品久久久久-亚洲中字字幕中文乱码-韩日av不卡一区二区三区| 亚洲天堂成人av影院-日韩精品国产一区在线久草-欧美国产另类久久久精品-91午夜精品久久香蕉| 国产精品熟女露脸对白-欲求不满中文字幕在线-日本一区二区三区的免费视频观看-激情久久av一区二区三区四区| 美女脱内衣内裤露出咪咪-美女一区二区三区免费观看-国产网红女主播在线视频-久久亚洲春色中文字幕| 国产色悠悠综合在线观看-亚洲av综合av一区-久久久久国产精品三级网-欧美日韩精品一区二区不卡| 91福利精品第一导航-国产一区二区三区不卡精品-偷拍日本美女公厕尿尿-国产黄三级三级三级看三级| 青草精品在线视频观看-色呦呦在线观看中文字幕-国产一区二区日本在线观看-草青青在线视频免费观看| 久久精品亚洲精品毛片-国产精品白丝在线播放-日韩国产欧美综合第一页-亚洲三a免费观看网站| 传媒精品视频在线观看-久久蜜汁成人国产精品-国产精品伦理视频一区三区-丰满少妇特黄一区二区三区| 国产免费福利在线激情视频-自拍偷拍福利视频在线-国产亚洲一区二区三区在线播放-欧美国产日本高清不卡免费| 亚洲少妇插进去综合网-久草免费在线人妻视频-丰满人妻熟妇乱精品视频-日韩极品精品视频免费在线观看| 国产午夜视频在线观看720p-成人深夜福利av在线-一区二区日韩精品教师学生-亚洲一区二区三区美臀在线播放| 中文字幕日韩有码av-麻豆国产成人av高清在线-可以免费观看的av毛片-久久这里只有精品国产亚洲| 换脸av一区二区三区-少妇精品亚洲一区二区成人-亚洲熟女综合一区二区三区-国产91久久精品成人看| 色综合久久中文综合网亚洲-久久精品午夜亚洲av-男人的天堂av日韩亚洲-91欧美激情在线视频| 久久久久亚洲av成人精品-久久精品成人一区二区-国产精品呻吟久久人妻无吗-国产欧洲日本一区二区| 视频一区二区不中文字幕-亚洲av色香蕉一区二区三区妖精-国产91精品在线观看懂色-国产一区二区三区不卡在线看| 久久噜噜噜精品国产亚洲综合-91精品国产高清久久福利-精品国产一区二区三区麻豆-日本加勒比一区二区在线观看免费| 高清一区二区三区不卡视频-中午字幕乱码亚洲无线码-亚洲一区二区三区在线视频观看-最新一二三国产精品网址| 国产视色精品亚洲一区二区-激情艺术中心国产精品-国产农村一级特黄真人片-免费观看午夜视频在线| 午夜男女靠比视频免费-欧美激情影院狂野欧美-国语淫秽一区二区三区四区-国产成人av区一区二区三泡芙| 精品女同一区二区免费播放-四虎成人精品国产永久免费-日韩在线播放av不卡一区二区-久热久草香蕉在线视频| 日韩毛片精品毛片一区到三区-四虎国产精品久久免费观看-国产网站在线观看91-亚洲熟妇av不卡一区二区三区| 中出少妇中文字幕一区二区三区-九九久久精品国产亚洲-美女免费是黄的一区二区av-日本在线视频观看91|