国产一区二区三区亚洲av,成人av综合亚洲一区二区,波多野结衣乱码中文字幕,国产★浪潮AV无码性色

Deaerator typePressure type rotary membrane deaerator源頭廠家規(guī)格參數(shù)
Your location : Home > Product > Deaerator type
Pressure type rotary membrane deaerator
Pressure type rotary membrane deaerator
Pressure type rotary membrane deaerator
Pressure type rotary membrane deaerator

Pressure type rotary membrane deaerator

The high working pressure of the pressure type rotary film deaerator is 0.59MPa or 0.78MPa (for subcritical units). The pressure of the low-pressure rotary film deaerator is greater than the ambient pressure (0.12MPa), and the temperature of the low-pressure rotary film deaerator is heated to 104 degrees with an oxygen content not exceeding 15ug/L. The temperature of the pressure type rotary film deaerator is around 160 degrees.
Online inquiry
下一產(chǎn)品 : waste-heat recovery unit
  • Content details

The difference between pressure type rotary membrane deaerator and low-pressure atmospheric rotary membrane deaerator:


The high working pressure of the pressure type rotary film deaerator is 0.59MPa or 0.78MPa (for subcritical units), and the pressure of the low-pressure rotary film deaerator is greater than the ambient pressure (0.12MPa). The temperature of the low-pressure rotary film deaerator is heated to 104 degrees, and the oxygen content is not more than 15ug/L. The temperature of the pressure type rotary film deaerator is about 160 degrees, and the oxygen content is 7ug/L.


According to working pressure, thermal deaeration can be divided into pressure type, atmospheric type, and vacuum type. The pressure inside the pressure type deaerator is generally 0.5-1.5MPa (- for pressure), the pressure inside the atmospheric deaerator is 0.11-0.12MPa, and the pressure inside the vacuum deaerator is 0.06-0.09MPa. In atmospheric and pressure deaerators, water is heated to a higher temperature and boils, while in vacuum deaerators, low-temperature water boils by maintaining a certain degree of vacuum. Therefore, vacuum deaerators require less heating steam. Due to the fact that low temperature can reduce the corrosion of the inlet pipeline, some components such as nozzles can be made of non-metallic corrosive materials with lower strength. Therefore, the outlet temperature of the vacuum deaerator is low (30-60 ℃), and the utilization of boiler waste heat is effective, which is particularly suitable for the feedwater deaeration of low-pressure small steam boilers and hot water boilers. The junction of the vacuum deaerator is generally of the spray type. Due to the need to maintain its internal vacuum degree, the deaerator system needs to have a set of vacuum pumping devices (vacuum pump, water jet or steam jet).


Introduction to pressure type rotary membrane deaerator:


The pressure type rotating film deaerator, also known as the pressure type rotating film deaerator, is a substitute for the spray packing deaerator, and is a thermal deaerator. The principle of the rotating film deaerator is that the make-up water is sprayed out spirally through the film forming tube at a fixed angle to conduct heat exchange with the heating steam for deoxygenation, and the feedwater is heated to the saturation temperature under the working pressure of the corresponding deaerator to remove oxygen and other gases dissolved in the feedwater, so as to prevent and reduce the boiler feedwater pipe Corrosion of economizers and other ancillary equipment.


The foundation of deaerator:


Deaerator is one of the key equipment in boilers and heating systems. If the deaerator has poor deaeration capacity, it will cause severe losses to the corrosion of boiler feedwater pipelines, economizers, and other ancillary equipment, and the economic losses caused will be dozens or hundreds of times greater than that of deaerator construction. Therefore, the Ministry of Electric Power has proposed some standards for the oxygen content of deaerator, that is, the oxygen content of atmospheric deaerator feedwater should be less than 15% цɡ/ L. The oxygen content in the feedwater of the pressure deaerator should be less than 7 цɡ/ L.


The law of deoxygenation, the Galuc's law, states that when the pressure remains constant, for every 1 ° C increase in temperature of a fixed gas, the increase in volume is equal to 1/273 of its volume at 0 ° C; Or, when the pressure remains constant, the volume of a fixed gas is directly proportional to the thermodynamic temperature. It was discovered by the French scientist Gail ü sak in his experiments, hence the name. Suitable for natural gases, it is also approximately applicable to real gases at high and low temperatures.


Henry's law states that at a constant temperature, when the total gas pressure is not high, for a dilute solution, the concentration of the solute in the solution is proportional to its partial pressure in the gas phase; Dalton's law of partial pressure states that, at constant temperature and volume, the total pressure of a gas is equal to the sum of the partial pressures of its components, and the partial pressures of each component are equal to the pressure exhibited by the gas when it occupies a single total volume.


Pressure type rotary membrane deaerator structure:


The deoxygenation equipment mainly consists of two major components: the deoxygenation tower head, the deoxygenation water tank, and the connecting and external parts. The main component of the deoxygenation tower head is composed of a shell, a steam water separator, a type of rotary membrane separator (membrane tube), a water spray grate, and a heat storage packing liquid vapor network. Below, we will introduce the structure and principle of the deoxygenation tower head


1. Shell: It is made by welding the cylinder body and stamped elliptical head The small and low pressure deaerator is equipped with a flange connection between the upper and lower parts for assembly and maintenance purposes, while the high pressure deaerator is equipped with a manhole for maintenance purposes


2. Soda water separator: This device replaces the original design of the straw hat cone structure inside the deaerator, eliminating the phenomenon of steam carrying water in the deaerator.


3. Rotating membrane unit: composed of a water chamber, a steam chamber, a rotating membrane tube, a condensate pipe, a supplementary water pipe, and a secondary steam inlet pipe. The condensate, chemical supplementary water, are sprayed out in a spiral shape at a fixed angle through the rotating membrane unit to form a water film skirt, which exchanges heat with the heating steam introduced by the secondary heating steam pipe, forming a secondary deoxygenation, The feedwater is heated to a saturation temperature of 2-3 ℃ near the working pressure of the deaerator by contacting the rising secondary heating steam through a sprinkler grate, and then undergoes coarse deaeration- Generally, this rotary membrane can remove about 90-95% of the oxygen content in the feedwater


4. Water shower grate: It is made of several layers of staggered angle shaped steel, and the water supply through rotary membrane and coarse deoxygenation is distributed here for secondary distribution, falling evenly in a rain like manner onto the liquid vapor network installed below it


5. Heat storage packing liquid vapor network: It is composed of spaced flat steel strips and cylindrical bodies, with stainless steel wire mesh installed at a fixed height inside. The water supply is in full contact with the secondary steam here, heated to saturation temperature and subjected to degree deoxygenation. The low-pressure atmospheric deaerator is -10ug/L, and the high-pressure deaerator is -5ug/L (the ministerial standards are 15ug/L and 7ug/L respectively)


6. The deoxygenated water in the water tank is collected into the lower container of the deaerator, which is the water tank. The deaeration water tank is equipped with a scientifically designed strong heat exchange and reboiling device. This device has strong heat exchange, quickly increases water temperature, deoxygenates, reduces water tank vibration, and lowers mouth pressure, improving the use of equipment and ensuring the safe and reliable operation of equipment


Working principle of pressure type rotary film deaerator:


Condensed water and supplementary water - enter the water chamber of the internal rotary membrane reactor in the deaeration head, and spray diagonally from the small hole of the membrane tube to the inner hole under a fixed water level differential pressure, forming a jet. As the inner hole is filled with rising heating steam, water will suck in a large amount of heating steam during the jet movement (experimental results show that the jet movement has a suction effect); A violent heating effect is generated on a short and small stroke, resulting in a significant increase in water temperature. The rotating water continues to spiral down along the inner wall of the membrane tube, forming a layer of turbulent water film skirt (the critical Reynolds number of water decreases during rotational flow, causing turbulent rolling). At this time, the heat and mass transfer of water in the turbulent state is achieved, and the water temperature reaches saturation temperature. Oxygen is separated out, and due to the arbitrary diffusion of oxygen in the inner hole, only rising steam is discharged into the atmosphere from the exhaust pipe (although the deaerator heats water and separates oxygen, the oxygen ratio is greater than that of the heating steam, and some oxygen is carried into the water tank by downstream water, which is also one of the reasons for poor deaeration results). The water supply that undergoes membrane and coarse deoxygenation, as well as the drainage introduced by the drainage pipe, are combined here for secondary distribution, falling evenly in a rain like manner onto the liquid vapor network installed below it, and then undergoing partial deoxygenation before flowing into the water tank. The oxygen content in the water tank is high pressure 0-7 цɡ/ L. Low pressure less than 15 цɡ/ L meets the operational standards issued by the department.


Due to the fact that the rotary membrane deaerator keeps the water in a turbulent state during operation and has a sufficiently large heat exchange surface area, the more heat and mass transfer results, the smaller the exhaust steam volume (i.e., the less steam used for heating, and the less energy loss, the more economic benefits it brings). The excess produced by the deaerator can enable it to operate under load (usually up to 50% of the rated output in the short term) or achieve operating standards under low water temperature full replenishment.


Pressure type rotary membrane deaerator -:


Not only can it remove dissolved oxygen from boiler feedwater, but it can also remove corrosive gases such as free CO2, NH3, H2S, etc. from water.


Deoxygenated water - will not increase salt content and other impurities.


Using high packing material, high deoxygenation rate, and warm water supply.


Under normal room temperature conditions, the oxygen content of the effluent can still meet the specified requirements.


The classified deoxygenation equipment mainly consists of two major components: the deoxygenation tower head, the deoxygenation water tank, and the connecting and external parts. The main component of the deoxygenation device (deoxygenation tower head) is composed of a shell, a steam water separator, a type of rotary membrane separator (membrane tube), a water spray grate, a heat storage packing liquid vapor network, and other components


The interface ring between the deaerator and the water tank is welded at the installation site to form the deaerator equipment. The accessories of the deaerator equipment include:


1. Safety valve: installed on the water tank, when the internal pressure of the equipment exceeds the allowable value, the safety valve automatically opens to release pressure, playing a safety protection role.


2. Pressure gauge: installed on the top of the deaerator to monitor the pressure inside the equipment.


3. Thermometer: installed at the bottom of the water tank to monitor the temperature of the water inside the tank.


4. Butterfly valve: installed on the heating steam pipeline, with the help of an electric regulator, the heating gas flow rate is adjusted to maintain the pressure inside the deaerator within the rated range.


5. Stop valve: installed on the secondary heating steam pipeline to regulate the flow rate of the secondary heating steam.


6. Regulating valve: installed on the chemical water supply pipe, with the help of an electric water temperature control system, to regulate the flow rate of makeup water and maintain the positive water level of the water tank.


7. Water level gauge: installed on the water tank to monitor the water level inside the tank.


8. Electric gate valve: installed on the drainage pipeline of the water tank. When the water level in the water tank exceeds a certain limit, the electric gate valve will automatically open with the help of the electric water level regulation system, and the water that exceeds the limit will be discharged to the drainage tank.


9. Automatic pressure regulator: Automatically adjusts the opening of the heating steam flange, which not only regulates the steam flow rate but also maintains stable pressure inside the deaerator.


10. Electric water level regulation system - Automatic adjustment of supply water flow and control - Limiting water level discharge valve (electric gate valve).


11. Monitor the temperature of the main condensate inside the deaerator, including chemical makeup, drainage, heating steam - and feedwater, as well as the outlet temperature of the exhaust steam.


12. Monitoring heating steam: pressure gauges for main condensate, chemical step water, and drain pressure.


The above attachments and accessories can be purchased by our factory, but they are not within the scope of supply.


Choose a pressure type rotary membrane deaerator to provide the following data:


Rated output of deaerator: t/h, water replenishment capacity of deaerator: t/h


Working pressure of deaerator: MPa, make-up water temperature entering deaerator: ℃


Operating temperature of the deaerator: ℃, entering the deaerator high pressure heater drainage water volume: t/h


Main steam pressure: MPa, entering deaerator high pressure heater drain temperature: ℃


Main steam temperature


Specification, model, and technical parameters of high-pressure deaerator:


Technical parameters of rotary membrane deaerator:


Pressure type rotary film deaerator (also known as pressure type rotary film deaerator, high-level rotary film deaerator) GCM type operating pressure 0.1-0.98 MPa:

型號額定出力
T/H
水箱有-
容積(m)
工作溫度
(℃)
工作壓力
Mpa
進(jìn)水溫度
(℃)
設(shè)計溫度
(℃)
設(shè)備-量
(Kg)
GCM-220220501580.52025022866
GCM-250250601580.52025025260
GCM-300300701580.52025029292
GCM-350350701580.52025030756
GCM-4404401001580.52025048166
GCM-6006001401580.52025062560
GCM-6806801401580.52025063895
GCM-7107101401580.52025065062
GCM-108010802001580.52025092220
















 
大氣式低壓旋膜除氧器(又稱低壓旋膜除氧器,低位旋膜除氧器)DCM型運行壓力0.02~0.08MPa:

型號額定出力
T/H
水箱有-
容積(m)
工作溫度
(℃)
工作壓力
Mpa
進(jìn)水溫度
(℃)
設(shè)計溫度
(℃)
設(shè)備-量
(Kg)
DCM-101051040.02202503680
DCM-2020101040.02202504570
DCM-3535151040.02202505355
DCM-4040201040.02202506150
DCM-5050221040.02202508250
DCM-7575251040.02202509445
DCM-8585351040.022025012200
DCM-100100401040.022025014805
DCM-130130451040.022025016250
DCM-150150501040.022025017500
DCM-300300751040.022025023885



zanpc zanpchover
wechat 分享到微信
wechat 分享到微信
weibo 分享到微博

產(chǎn)品動態(tài)

打賞
手機(jī)看全文
手機(jī)掃碼看全文
分享
微信好友
復(fù)制鏈接
掃碼分享至微信

Pressure type rotary membrane deaerator源頭廠家Copyright ? 2012-2023 Lianyungang Lingdong Electromechanical Equipment Co., Ltd all rights reserved

Tel

0518-85370171

欧美日韩激情免费观看-成年大片免费视频观看-俺来也去也网激情五月-在线国产精品自偷自拍| 色激情五月关键词挖掘-日本精品一区二区三区视频-亚洲精品一区二区三区四区久久-亚洲综合久久激情久久| 手机亚洲av网站在线-怡红院亚洲第一综合久久-国产精品日本一区二区在线看-粉嫩蜜臀人妻国产精品| 亚洲国产高清一区二区三区不卡-亚洲综合小综合中文字幕-亚洲黄色成人av在线-日韩一区二区三区av观看| 国产精品高潮呻吟久久av嫩-青青草免费公开在线观看视频-亚洲欧美日韩另类综合视频-国产三级在线观看精品| 久久中文字幕人妻淑女-日韩欧美亚洲一中文字幕-日本免费一区二区三区视频-亚洲精品乱码免费精品乱码| 免费观看国产裸体视频-久久亚洲精精品中文字幕早川悠里-99精品国产一区二区青青牛奶-久久精品成人av免费观看| 日本大黄高清不卡视频在线-亚洲色图视频在线观看免费-国内精品自拍视频在线观看-av免费在线观看看看| 中文国产成人精品久久一-亚洲一区二区精品视频网站-在线深夜羞羞福利视频-麻豆视频传媒免费入口| 精品人妻一区二区三区久久91-久久精品亚洲国产av搬运工-日本熟女人妻一区二区三区-亚洲国产精品高清线久久| 久久超碰97中文字幕亚洲-亚洲成人精品在线一区二区-亚洲天天操夜夜操狠狠操-久久午夜鲁丝片午夜精品| 国产高清三级自拍视频-最近日本免费播放视频午夜-日本女优一级片中文字幕-在线播放深夜精品三级| 国产丝袜在线精品丝袜不卡-精品一区二区三区爆白浆-在线不卡小视频播放网站-视频二区中文字幕在线播放| 日韩黄色精品中文视频-久久精品国产亚洲懂色-欧洲美女日韩精品视频-国产一区二区三区精品愉拍| 九九热在线免费视频精品-偷拍日本美女厕所尿尿-深夜老司机福利在线观看-偷拍精品视频日本久久| 国产精品第五页在线观看-亚洲欧美日韩丝袜另类一区-国产懂色av一区二区三区-午夜亚洲欧美日韩在线| 国产亚洲精品视频自拍-激情五月开心五月婷婷-日本少妇三级交换做爰做-国产日韩三级中文字幕| 91国际精品麻豆视频-蜜臀av国产在线观看-av一区二区三区精品-人妻精品一区二区三区av| 你懂的视频网站亚洲视频-欧美色欧美亚洲另类搞逼-国产三级精品三级精品在一区-亚洲国产午夜精品在线| 日韩网激情视频在线观看-国产午夜98福利视频在线观看-国产精品尤物极品露脸呻吟-日韩手机在线视频观看成人| 亚洲不卡视频一区二区三区-99久久精品国产成人综合-国内精品熟女亚洲精品熟女-亚洲日本成人在线观看高清| 日本岛国三级黄色录像-日韩久久成人免费电影-中文字幕日韩专区一区二区-国产成人大片在线播放| 亚洲av优优优色首页-国产精品国产三级av-国产自拍精品午夜福利-亚洲av高清一区二区三区| 国产精品国产三级在线试看-亚洲男人天堂一区二区在线观看-风韵丰满熟妇啪啪区99杏-最近中文字幕日韩有码| 国产精品一区二区三区av麻-蜜桃传媒免费在线播放-久久亚洲中文字幕精品-国产精品白嫩极品在线看| 最好韩国日本免费高清-蜜桃视频一区二区三区在线观看-国产精品黄色大片在线看-日本高清视频亚洲不卡| 妖精亚洲av成人精品一区二区-精品日韩一区二区三区av-在线精品国精品国产尤物-在线播放国产精品三级网| 中文人妻久久精品一区二区-国产男女猛烈无遮挡免费视频网址-午夜福利成人一区二区三区在线-岛国av一区二区国产精品| 亚洲视频一区二区久久-亚洲欧美日韩精品中文乱码-亚洲尤物在线视频观看-欧美熟妇视频一区二区三区| 青青草视频在线观看免费网站-国产精品久久久久久亚洲影-在线播放国产精品一区二区-青青草免费观看高清视频| 久久精品国产亚洲av麻豆看片-内射后入高潮在线视频-亚洲精品一区三区三区在线-亚洲乱码一区二区三区视色| 亚洲av日韩av天堂影片精品-熟妇人妻丰满少妇中文-国产精品日本一区二区三区-国产精品熟女乱色一区二区| 国产韩国精品一区二区三区-久久精品人妻一区二区三区av-黄片视频在线观看欧美-国产成人自拍在线视频| 91人人妻人人澡人人爽超污-精久国产av一区二区三区-日韩av在线一区二区三区-免费视频又爽内射男女| 亚洲熟妇激情视频99-丝袜美腿诱惑av网站在线观看-欧美国产综合激情一区精品-激情综合网激情五月我去也| 最新国产av在线播放-成人av免费观看黄色-中文字幕人妻av一区二区风险-亚洲av午夜精品福少妇喷水| 很黄无遮挡在线免费网站-韩国精品一区福利视频在线播放-爱看色黄色大片儿网站-日韩综合一区二区三区在线观看| 精品国产美女av天堂-狼人av在线免费观看-日韩精品人妻中文字幕有码在线-欧美视频亚洲视频自拍偷拍| 午夜亚洲国产色av天堂-色天天综合色天天久久191-国产精品久色婷婷不卡-日韩欧美中文字幕在线韩| 国产欧美日韩精品一区二-久久精品国产精品青草色艺-人妻熟妇视频一区二区不卡-亚洲国产精品第二在线播放| 国产精品女同一区二区久久夜-日本精品女人一区二区三区-亚洲成人久久久久久-激情五月婷婷综合激情|