国产一区二区三区亚洲av,成人av综合亚洲一区二区,波多野结衣乱码中文字幕,国产★浪潮AV无码性色

Deaerator typewaste-heat recovery unit源頭廠家規(guī)格參數(shù)
Your location : Home > Product > Deaerator type
waste-heat recovery unit
waste-heat recovery unit
waste-heat recovery unit
waste-heat recovery unit

waste-heat recovery unit

The waste heat recovery device is used for the exhaust steam recovery of boiler deaerator in various industries such as thermal power, petrochemical, light industry, textile, food, papermaking, steel, heating, etc. Waste heat recovery device, also known as energy collector, recovery device, surface exhaust energy collector, etc.
Online inquiry
  • Content details

Introduction to waste heat recovery device:


Deaerator exhaust is mostly directly discharged into the atmosphere in various power plants and power stations, causing heat loss, affecting economic benefits, air pollution, exhaust noise, and environmental problems. At the same time, it also occurs in northern China. In winter, when the temperature is low, phenomena such as hanging ice edges at the deaerator exhaust and large-scale icing in the machine room occur, Due to the condensation of saturated steam and cold air into water, ice has formed, leading to incidents of falling ice edges and damaging the pressure of the computer room. In order to address these issues, improve economic efficiency, save energy, and eliminate environmental problems, a deaerator exhaust steam recovery and utilization device has been developed. The device is suitable for the waste heat recovery of heat exchange equipment such as continuous discharge expansion vessels and periodic discharge expansion vessels. After steam is introduced into the boiler's thermal deaerator for deoxygenation, a large amount of flash steam is discharged, which not only wastes energy but also has an impact on the environment. A thermal deaerator waste heat recovery device has been designed based on a jet combined heater using water jet extraction method. Users can easily install it above the deaerator to recover flash steam as hot water. The waste heat recovery device is used for the exhaust steam recovery of boiler deaerator in various industries such as thermal power, petrochemical, light industry, textile, food, papermaking, steel, heating, etc. Waste heat recovery device, also known as energy collector, recovery device, surface exhaust energy collector, etc.


Principle of waste heat recovery device:


The upper part of the cylinder body of the deaerator energy harvester is equipped with a spray cooling pipe chamber, which is composed of a high-pressure rotary jet injector and a cooling pipe, and its side is connected to a cooling water inlet pipe. Below the spray cooling pipe chamber is the atomization space, and below the atomization space is the heat and mass transfer component. Below the heat and mass transfer component is the steam distributor, which is connected to the exhaust pipe on the side.


This type of exhaust energy harvester is different from the ordinary deaerator residual steam recovery device. It condenses the three heat and mass transfer methods of atomization, water spraying tray, and liquid film into a body, so it has a high efficiency. It not only has a great heat absorption function, but also has strong analytical ability for non condensable gases. The ordinary water spraying and falling film are replaced by strong atomization and falling film, which increases the degree of the liquid film and makes the liquid film strongly entrain a large amount of steam, increasing the heat and mass transfer function.


Introduce the exhaust (steam) of the deaerator into the residual steam recovery tank from the inlet, and combine it with the supplementary water or condensate water introduced from the inlet for mass transfer. Under the action of the internal mass transfer medium, water and steam are fully in contact, and the "inlet" absorbs the water vapor contained in the "inlet" and discharges it into the drainage tank from the bottom outlet of the tank. Non condensable gas is discharged into the atmosphere from the tank outlet. The residual steam of the deaerator passes through the cooler, and then the flow of make-up water is adjusted to regulate the water temperature of the drain tank. The cooling water enters the tower body from the inlet and reaches the upper cooling plate. When the water level exceeds the buffer plate, it flows through the cooling holes to the upper cooling plate and then from the cooling plate to the lower cooling plate. During this process, the cooling steam is heated again, and then flows into the drainage tank from the outlet for recycling.


Economic analysis of the use of waste heat recovery equipment:


Thermal deaerator waste heat recovery device: It is known that 350t of desalinated water is replenished daily, the desalinated water pressure is designed at 0.5Mpa, the exhaust temperature is 110 ℃, the exhaust pressure is 0.02Mpa, and the desalinated water is heated from 20 ℃ to 60 ℃. The calculation results are as follows:


1. Calculation of the recovery of desalinated water by the deaerator waste heat recovery device:


Calculated by the formula: GH=GP (hp2-hp1)/(hH hp2).


Equation - GH - Steam flow rate of injector injection (deaerator exhaust steam flow rate)


GP - Flow rate of working water in the heater (desalination water replenishment flow rate)


Hp2- Enthalpy of desalinated water at 60 ℃


Hp1- Enthalpy of desalinated water at 20 ℃


HH - latent heat of vaporization in deaerator exhaust


GP=(350 × 1000)/(24 × 3600)=4.05kg/s


According to the table, hp2=251.5kJ/kg, hp1=84.3kJ/kg, and hH=2691.3kJ/kg


Substituting into the above equation - results in GH=4.05 × (251.5-84.3) ÷ (2691.3-251.5)


=4.05 × 167.2 ÷ 2439.8


=0.28kg/s


zero point two eight × three thousand and six hundred × 24 ÷ 1000=24t/d


24 tons of desalinated water will be recovered daily.


-The verification calculation of the injector injection coefficient: u=GH/GP=0.28 ÷ 4.05=0.069, when the working water temperature is 20 ℃, the injector large injection coefficient can reach umax=0.2, which can meet the requirements of the working condition.


2. Calculation of coal saving amount for deaerator waste heat recovery:


Recovered thermal energy Q=GH (hH hp2)


=0.28 × (2691.3-251.5)


=0.28 × 2439.8=683.14kJ/s


six hundred and eighty-three point one four × twenty-four × 3600=59023641.6kJ/d


Converted to 6000kar standard coal per kilogram, the daily coal savings for deaerator waste heat recovery are 59023641.6 ÷ (6000) × 4.18)=2353.4kg/d=2.4t/d


The waste heat recovery of the deaerator can save 2.4 tons of standard coal per day.


3. Economic analysis of deaerator waste heat recovery device:


According to the above results, if the deaerator waste heat recovery device operates for 8000 hours per year, it will be calculated at 300 yuan per ton of coal.


Deoxidizer waste heat recovery - annual coal saving 2.4 × 8000 ÷ 24=800 tons


Deaerator waste heat recovery - annual cost savings of 800 × 300=240000 yuan=240000 yuan


Deaerator waste heat recovery - annual recovery of desalinated water 24 × 8000 ÷ 24=8000 tons


5、 Will the use of a deaerator waste heat recovery device affect the deaeration results


Under the same operating conditions of the deaerator and with a sample of exhaust valve opening, the specific analysis is as follows:


Set the exhaust volume to Q gas, the internal pressure of the deaerator to P, and the atmospheric pressure to P0. In Figure 2-, the internal pressure of the deaerator is set to P, the internal pressure of the combined heater is Ph, the exhaust volume of the deaerator is Qh, the water replenishment dissolved oxygen is Q oxygen, and for the gas water separation tank, the automatic exhaust valve exhaust volume is Q gas'.


In the system shown in Figure 2, Ph is the saturation pressure for water replenishment.


Due to PhP-P0


So Qh>Q gas


△ Q gas=Qh Q gas, Q oxygen=Qh Q gas'


If Q Qi=Q Qi '


Then △ Q gas=Q oxygen


This equation is the criterion for determining whether the waste heat recovery device of the thermal deaerator affects the deaeration result.


When Δ Q gas ≥ Q oxygen, the waste heat recovery device of the thermal deaerator will not affect the deaeration result;


When Δ Q gasQ oxygen, which will not affect the deoxygenation effect.


When the exhaust valve is opened appropriately, the exhaust volume will also increase. As the exhaust is recovered by the injection type combined heater, it will not have a negative impact on the economy.


Deaerator waste heat recovery device technology -:


(1) High heat exchange rate, sufficient heat and mass transfer, with a recovery rate of over 99%;


(2) Design - outstanding, structure - simple, low failure rate;


(3) Stable operation, safe and reliable, and easy recycling of cooling water;


(4) Non condensable gases are discharged into the atmosphere, reducing pipeline oxygen corrosion and prolonging the use of equipment pipelines;


(5) Eliminate noise, replace the original deaerator exhaust steam eliminator, and beautify the environment;


Deaerator waste heat recovery device -:


(1) Recovering low-pressure or low-pressure exhaust steam heat energy and condensate water; Simultaneously discharge various gases such as exhaust steam and heating water;


(2) Automatic liquid level adjustment system for small volume and large flow separation tanks;


(3) Compact structure, small footprint, and convenient access to the system.


(4) The use of suction injection steam (gas) method does not affect the positive emission of the process.


(5) Designed as a "self rinsing" structure to minimize the formation of scale.


(6) - The pump supplies high-pressure water pipelines without consuming additional factory electricity.


(7) The recovery device is located on the deaeration platform, and the pipeline is between the high and low desalination water pipes, with a close distance and low construction cost.


Jet combined heater as the recovery body of the deaerator waste heat recovery device


The deaerator waste heat recovery jet combined heater consists of a shell, a nozzle (single or orifice), a combined pipe, and other components. When the heated liquid passes through the nozzle, a certain low pressure is formed at its throat (or false throat), which sucks in the exhaust steam and combines with the heated liquid through the combined pipe to achieve the purpose of heating. The liquid heated to the required temperature flows out from the outlet of the heater.


There are two types of jet combined heaters: liquid jet and steam jet. When the steam pressure is stable and the thermal load changes little, steam jet can be used. Its function is to utilize the available energy of steam, reducing the energy consumption of the driving pump (circulation pump), that is, electricity consumption. In general, the jet type combined heater can meet the user's usage requirements.


Overview of thermal deaerator waste heat recovery device:


The deaerator waste heat recovery device is an integrated device consisting of three units (modules): a suction exhaust steam heating device, a gas-liquid separation tank, and gas discharge, hot water pressure recovery and lifting, as well as random liquid level control and thermal energy recovery metering instruments. It is connected to the exhaust steam recovery system through three interfaces.


1. Proportional superposition regulation technology with high flow rate and small volume


The tank body of its gas-liquid separation tank is compact, with a storage capacity of only a fraction of the standard design, and the level fluctuation control is very high- Fully automatic and stable operation with personnel on duty. This allows the deaerator waste heat recovery device to be installed in narrow spaces, even on the deaerator platform, resulting in high heat recovery rate and low heat loss.


2. Power head for stable operation under wide load


Process flow of deaerator and energy collector:


The cooling water is introduced from the inlet pipe of the deaerator steam collector through the desalination water main pipe, and the deaerator steam is discharged from the deaerator exhaust valve and connected to the energy collector. After sufficient mass and heat transfer inside the equipment, non condensable gas is discharged from the upper exhaust gas outlet. The condensed water flows downward along with the sprayed atomized liquid film, flows out from the outlet, and enters the drainage tank.


Specification, model and technical parameters of waste heat recovery device:



型號(hào)

H

D1

D2

D3

D4

D5

D6

DN

CYH-75

1800

65

65

40

40

40

40

350

CYH-100

1950

80

80

50

50

40

40

400

CYH-150

2200

100

100

65

50

65

40

450

CYH-220

2300

125

125

80

65

80

50

500

CYH-300

2400

125

125

100

65

100

50

550

CYH-420

2500

150

150

100

80

100

65

600

CYH-680

2600

150

150

100

80

100

65

650

CYH-1100

2800

200

200

125

100

125

80

700



zanpc zanpchover
wechat 分享到微信
wechat 分享到微信
weibo 分享到微博

產(chǎn)品動(dòng)態(tài)

打賞
手機(jī)看全文
手機(jī)掃碼看全文
分享
微信好友
復(fù)制鏈接
掃碼分享至微信

waste-heat recovery unit源頭廠家Copyright ? 2012-2023 Lianyungang Lingdong Electromechanical Equipment Co., Ltd all rights reserved

Tel

0518-85370171

超碰成人av免费观看-伊人色综合久久天天伊人婷-av天堂激情在线观看-国产精品自拍国产精品| 一本色道久久综合亚洲精-亚洲精品一区二区三区乱码-性生活高清免费视频免费-99热这里只有的精品3| 欧美成人国产精品137片内射-空之色水之色 在线观看-精品国产亚洲一区二区在线观看-色婷婷精品午夜在线播放| 亚洲天堂成人av影院-日韩精品国产一区在线久草-欧美国产另类久久久精品-91午夜精品久久香蕉| 九九热这里只有精品在线免费视频-色一情一乱一乱一十九区-国产午夜福利视频在线观看-久草免费手机在线视频观看| 玩弄漂亮少妇高潮大叫-国产熟女露脸av自拍-国产自拍免费精品视频-日韩精品素人妻在线看| 福利一区福利二区刺激-亚洲精品久久麻豆蜜桃-久久av蜜臀人妻一区二区三区-国产av剧情精品播放网站| 亚洲中文字幕五月五月婷-极品毛片av一区二区三区-欧美精品天堂一区二区不卡-精品一区二区不卡在线播放| 91精品国产色综合久久不88-黑人性做爰片免费视频看-房事插几下硬不起来了咋治疗-熟女乱一区二区三区四区| 亚洲国产日韩精品欧美银杏-99久久免费热在线精品-国产精品免费不卡av-国产精品老熟女视频一区二区| 日韩中文字幕精品人妻-国产欧美亚洲91在线-亚洲欧美激情第一欧美精品-精品视频美女久久久中文字幕| 国产精品久久三级精品-国产一级一片内射免费播放-一区二区三区国产精品麻豆-国产精品情侣自拍av| 成人国产精品中文字幕-国产馆在线精品极品麻豆-国产极品视频一区二区三区-国产一区二区三区无遮挡| 黄色av日韩在线观看-偷拍自拍在线免费视频-色偷偷偷亚洲综合网另类-国产成人免费综合视频| 国产精品中文字幕在线一区-国产成人美女精品自在拍av-密桃av一区二区三区四区-女优免费中文字幕在线| 欧亚久久日韩av久久综合-国产性感美女色诱视频-色噜噜人妻丝袜av先锋影院先-二次元中文字幕色在线| 女同在线播放中文字幕-国产成人亚洲精品在线看-日韩有码在线观看视频-蜜桃av噜噜一区二区三区视频| 日本一区二区三区四区在线-黄色激情免费看国产看片-微拍福利一区二区视频-日本高清免费不卡观看| 国产精品剧情一区在线观看-精品伊人久久大香线蕉-一起草视频在线播放观看-精品少妇人妻av一区二区蜜桃| 国产精品欧美日韩视频二区-少妇人妻系列中文在线-精品人妻一区二区三区四区不卡-少妇被无套内谢免费视频| 亚洲乱码日产精品一二三-日韩中文字幕综合在线-日韩欧美一级黄色录像-午夜福利在线视频观看| 国产精品精品久久99-久久羞羞色院精品全部免费-日韩中文粉嫩一区二区三区-外国黄色三级视频网站| 青青草原精品在线观看-日本久久精品狼人狠狠操-欧美深夜福利视频网站-麻豆密入视频在线观看| 国产精品国产亚精品不卡-欧美淫淫基地电影网站-亚洲高清精品人妻偷拍-四虎精品永久在线播放| 看女人毛茸茸下面视频-日本一区二区黄色高清电影-隔壁人妻偷人中字免费-亚洲中国美女精品久久久| 蜜臀视频在线观看一区二区三区-少妇人妻偷人精品系列-天美传媒国产精品果冻-色综合久久综合欧美综合网| 99久久国产自偷自自偷蜜月-日韩熟女激情中文字幕-亚洲狼人社区av在线观看-四虎成人精品国产永久| 日韩视频精品在线播放-国产91亚洲精品久久-亚欧洲乱码视频在线观看-亚洲国产成人91精品| 亚洲高清无吗视频在线播放-国产亚洲最新在线不卡-久久亚洲国产精品成人-二区三区在线免费观看视频| av毛片天堂在线观看-亚洲av成人午夜亚洲美女在线-九九久久精品国产免费av-亚洲av永久精品免费| 中文字幕亚洲天堂第一页-国产午夜福利在线视频-亚洲精品中文字幕女同-亚日韩精品一区二区三区| 在线看片国产福利你懂得-av中文字幕精品一本久久中文字-亚洲一区二区三在线高清真人-日韩在线不卡视频免费看| 日本在线观看一区二区免费-日本一区二区精品在线观看-老湿机午夜免费在线观看-成人在线永久免费观看| 国产白浆一区二区在线观看-青草衣衣精品国色天香亚洲av-欧美午夜福利性色视频-成人亚洲一区二区三区在线观看| 深夜福利导航在线观看-情色视频在线观看一区二区三区-丝袜美腿诱惑福利视频-国产最新福利一区二区三区蜜桃| 少妇人妻偷人偷人精品-国产精品黄色在线播放-亚洲熟伦熟女新五十路熟妇亚洲-国产综合91精品百人斩| 久久夜色国产精品亚洲-国产视频一区二区三区免费观看-亚洲一区二区成人在线观看-日韩精品一区二区三区在线视频| 国产精品中文字幕在线一区-国产成人美女精品自在拍av-密桃av一区二区三区四区-女优免费中文字幕在线| 日韩97精品一区二区三区-九九日本黄色精品视频-一进一出流出白浆视频-国产亚洲精品不卡视频| 亚洲综合精品一区二区在线-国产亚洲精品视频在线播放-国产精品经典三级免费观看-五月婷婷六月丁香视频| 国产女主播在线播放福利-日韩中文字幕综合第二页-av男人的天堂免费观看-国产乱码免费一区二区三区不卡|